
January 1998 The Delphi Magazine 37

Get On The Web With Delphi 3
Everything you need to know about writing web applications
using Delphi 3 (but didn’t know you needed to ask): Part 2
by John O’Connell

Last month we looked at how a
WebModule and WebDis-

patcher-based web application
worked with the TWebResponse and
TWebRequest objects which encap-
sulate an HTTP request and
response. This month we’ll take an
in-depth look at what you need to
know about using page producer
components and creating your
own custom page producers for
use building the web application’s
response content. We’ll also dis-
cuss how to configure Netscape
servers and NSAPI for use with
server API DLLs and what to watch
out for when using the BDE in ISAPI
and NSAPI applications. Finally, I’ll
include some other useful develop-
ment tips, all aimed at maximising
the capabilities of your web
applications.

Page Producer Productivity
Whereas the WebDispatcher takes
care of routing the Request and
Response objects to the relevant
TWebActionItem’s OnAction event
handler, page producers take care
of generating the Response object’s
content from HTML templates or
from datasets in HTML table form.

Bob Swart has already discussed
page producers in previous arti-
cles, here I’ll go into some more
detail about how to make the most
of the page producer components.

It is possible to chain together
page producers such that the Con-
tent property of one can be
assigned to the content property of
another. This can be useful for
incrementally building the
response content, particularly
where the content must be custom-
ised for the capabilities of different
browsers. For example, we can
take three TPageProducers, the first
having it’s HTMLDoc property con-
tain various HTML-transparent (or
custom) tags which can be

expanded into yet more custom
tags by the page producer’s
OnHTMLTag event. The first page pro-
ducer’s Content property can then
be assigned to the second page
producer’s HTMLDoc property and
the custom tags (produced by the
first page producer) contained
within can again be expanded by
the second page producer’s
OnHTMLTag event handler into more
custom tags where necessary. We
can then assign the second page
producer’s Content to our third
page producer’s HTMLDoc property
where the final content is pro-
duced and assigned to the Response
object’s Responseproperty. The fol-
lowing code shows how to chain
page producers:
PageProducer2.HTMLDoc.Add(
PageProducer1.Content);

PageProducer3.HTMLDoc.Add(
PageProducer2.Content);

Response.Content :=
PageProducer3.Content;

Obviously this can only work with
TPageProducers, the other page pro-
ducer classes don’t have an assign-
able content property like
HTMLDoc. However, we can
embed custom tags in the TData-
setTableProducer and TQueryTable-
Producer object’s content by
embedding the desired tag in the
CellData parameter of the OnFor-
matCell event handler. Then it’s a
simple matter of assigning the
dataset page producer’s Content
property to a PageProducer’s
HTMLDoc property. The PPCHAIN
demo application (whose output is

shown in Figure 1) called from the
demo web page GETCUST.HTM
demonstrates the use of chained
page producers.

HTML-transparent tags can also
contain any number of name=value
parameters which follow the tag
name, for example:

MYTAG ParamOne=AValue
ParamTwo=AnotherValue

Notice that the parameters are
delimited by a white space charac-
ter which shows up a serious limi-
tation: parameter values cannot
include white spaces and hence
the following tag will fail:

ADDRESS Street=95 The Boulevard
Town=New Town County=Surrey

Fortunately there is a simple way
around this: convert all spaces to
plus (+) characters as is done with
URL-encoding. The HTTPDecode and

➤ Listing 1

➤ Figure 1

if CompareText(TagString, ‘ADDRESS’) = 0 then
ReplaceText := format(‘<#ADDRESSLINES ADDR1=%s CITY=%s STATE=%s ZIP=%s>’,
[HTTPEncode(FieldByName(‘ADDRESS_1’).AsString),
HTTPEncode(FieldByName(‘CITY’).AsString),
HTTPEncode(FieldByName(‘STATE’).AsString),
FieldByName(‘ZIP’).AsString])

38 The Delphi Magazine Issue 29

HTTPEncode functions provided in
the HTTPApp unit make this very
simple and are used in the
PPCHAIN demo as shown in the
Listing 1 code snippet which builds
a custom tag with parameters
whose values are taken from the
CLIENT table in the DBDEMOS data-
base. The HTTPEncode and HTTPDe-
code functions take the string to
encode or decode as their only
parameter.

The nice thing about the above
workaround is that there’s no need
to call HTTPDecode to remove the +
characters from the tag parame-
ters when handling the OnHTMLTag
event, this will be done by the
ExtractHeaderFields procedure
(defined in HTTPAPP.PAS) called
by the ExtractHTTPFields proce-
dure (also defined in that unit)
which is called by the page produc-
er’s protected ContentFromStream
method which, among other
things, extracts any HTML-
transparent tags and passes them
to the protected HandleTag method
from where the OnHTMLTag event
handler is called to resolve any
custom tags. ContentFromStream is
called by the page producer’s Con-
tent function.

The HTTPAPP unit does contain
some other useful utility routines
worth checking out.

Creating your own page pro-
ducer component is pretty
straightforward. A basic page pro-
ducer whose content cannot be
directly specified or modified by
the component user should be
descended from TCustomContent-
Producer and it’s Content method
overridden. Whilst such simple
page producers may be limited in
use, they can be very useful. I’ve
created a very simple TFieldsPro-
ducer component which just dis-
plays the request fields (if any) for
the WebDispatcher’s Request object:
just drop the component on to
your WebModule and, in a TWebAc-
tionItem’s OnAction handler, assign
it’s Content method result to the
Request’s Content property. Try it
for yourself. You might find it
useful for debugging your own web
applications. You might want to go
much further and extend TFields-
Producer to display all properties of

the Request object, by then you’d
probably want to call the compo-
nent something like TRequest-
PropsProducer!

Custom page producer compo-
nents are potentially very power-
ful: the obvious candidate for
encapsulation as a custom page
producer is a page hit counter
which could display the hit count
as text or graphical digits as com-
monly seen in commercial web
pages. Another potential custom
page producer is one which
returns HTML formatted real-time
information from some remote
data-source accessed via the PC’s
communications port for instance.

Saving State
Some web applications need to
interact with multiple web pages or
web sessions, but because HTTP is
a “stateless” protocol, a web appli-
cation cannot access the request
data of any previous requests. In
other words, state is not main-
tained between web pages. I’m
sure at some time or other during
your quality web-surfing time
you’ve encountered multi-page
web applications (such as virtual
shopping malls, web search
engines etc) which somehow
manage to pass request data (ie
save state information) between
web pages and even web sessions!

So how’s it done? Bob Swart dis-
cussed a few approaches to state
saving in September’s issue, here
I’ll discuss the various approaches
with a detailed comparison.

There are three approaches to
state saving, ranging from the
simple and reliable to the clever
but not 100% reliable. The former
approach is to embed form field
values in the URL of the document
returned by the application, as is
done by the STATE1 demo applica-
tion called by MARKETING.HTM to
process it’s FULLNAME form field.
The output of STATE1 is shown in
Listing 2.

In this case the name “Jaimie”
was typed in the edit box of
MARKETING.HTM and is included
in each of the two hyperlinks which
execute the THANKYOU demo web
application. The main problem
with this approach is that in

situations where many variables
are being passed between many
web pages, the resulting URL can
become too long for the browser to
handle and information is lost. Not
only that, confidential form data
such as passwords will be visible
within the URL, not very clever.
But, for state saving, this method is
by far the most reliable and univer-
sal. This approach to state saving
uses the GET request method with
all its usual limitations.

To overcome these limitations
we can use hidden form fields
which can be POSTed to the web
application and so aren’t embed-
ded within the URL. To use this
approach we must use submit
pushbuttons instead of hyperlinks
as used in STATE1. The STATE2
demo web application which
produces the output in Listing 3.

The hidden HTML input type
isn’t displayed by the browser, it’s
effectively a hidden edit box hence
the name. Hidden form fields are
treated just like normal form fields
but they have one major drawback:
persistence, or rather, a lack of it
because a hidden field’s value is
lost as soon as another page is
called, which makes hidden fields
less useful for saving state.

Which leads us to cookies, the
clever but not 100% reliable
approach: let’s see why.

State-Saving Cookies
HTTP Cookies (or just cookies) are
name=value pairs sent to and stored
by the client. Cookies are provided
to make state saving between web
pages and web sessions easier and
more reliable. Support for cookies
became available with earlier ver-
sions of Netscape Navigator and
are also supported by Internet
Explorer 3.0x: given that both
browsers are widely used it’s fairly
safe to say that you won’t be
excluding a large proportion of
visitors from your web page if it
makes use of cookies. Cookies are
sent using the Set-Cookie response
header field of the form:

Set-Cookie: NAME=value; EXPIRES
Dayname, DD-MM-YY HH:MM:SS
GMT; PATH=path; DOMAIN=
domain; secure

January 1998 The Delphi Magazine 39

When the browser accesses the
domain which sent the cookie, it
sends the cookie back to the server
which passes it to the CGI program.
Cookies can have optional attrib-
utes to further refine their useful-
ness: the EXPIRES attribute
specifies a date, even a past date,
on which the cookie will expire. By
default cookies expire as soon as
the web session ends but by set-
ting a future date the cookie will
persist beyond the browser ses-
sion; by setting a past expiry date
the cookie is deleted. Note that the
time portion of the EXPIRES attrib-
ute is expressed in terms of GMT,
so be careful if your web applica-
tion resides on a server located
outside that time zone.

The DOMAIN attribute specifies
the domain to which the cookie will
be sent, by default the cookie is
sent to the domain name of the
server which sent the cookie, but
you can only specify a value within
the domain of the server. So if your
web application resides on
www.delphimag.com/cgi-bin your
cookie can have a domain attribute
of delphimag.com/cgi-bin/other or
just delphimag.com but not
www.borland.com. This makes
perfect sense: if it were possible for
you to set cookies to be sent to

another domain, you could write
applications which would spam
any web site with unwanted cook-
ies. The PATH attribute specifies a
substring of the path from the URL
and defaults to the path of the web
application, a cookie with a PATH of
/ will be sent to the server when-
ever the specified domain is
accessed. The secure attribute
specifies that the cookie will only
be sent to the server over a secure
HTTP connection. Note that cookie
attributes are separated by a semi-
colon and a space.

Both Navigator 3.0 and IE 3.0x
provide the security option of
accepting or rejecting a sent
cookie: the full cookie attributes
are displayed in a dialog, useful for
testing your cookie-bearing web
applications.

To send a cookie in your Delphi
application use the SendCook-
ieField method of TWebResponse
shown in Listing 4.

Cookies can be very useful but
are not universally supported by
all browsers, though I’d bet that
the majority of web surfers are
using cookie-friendly browsers.
The other drawback to using cook-
ies is that they’re invasive: because
they’re stored by the browser they
take up hard disk space which can

amount to quite a lot, especially if
many cookie-bearing web sites are
accessed. Furthermore, both
Netscape 3.0 and Internet Explorer
3.0x have a security option to warn
you that a cookie is about to be
sent to the browser, this cookie
can be rejected by the user in
which case your state saving strat-
egy will be broken. Also there is a
maximum number of cookies that
the browser can handle: Navigator
can handle around 20 cookies per
domain, as well as the issue of the
maximum length of the Cookies
request header field. And finally
it’s possible that the surfer may
delete or modify any stored cook-
ies using any one of the cookie
management utilities currently
available! Oh well.

The DIARY demo application
demonstrates the use of cookies
for maintaining state. Running
DIARY for the first time will present
you with a web page into which you
can enter your name. After submit-
ting the form two cookies, your
unique ID and name, are sent by
DIARY to be stored by the browser.
Each time DIARY is accessed, the
cookies (which identify you) are
sent to the application which
allows it to correctly identify you.
Diary entries can be added and
retrieved and are stored in a table
named WDIARY residing on the web
server in the DBDEMOS database.

Besides passing form data
between web pages and web ses-
sions, cookies are also useful for
storing information unique to the
web surfer such as a username for
accessing a private web page, cus-
tomisation settings for a web appli-
cation and anything else you care
to think of, provided the cookie
data is fairly short!

I want to conclude this section
on cookies by laying to rest the
serious misconception that cook-
ies are capable of wreaking all
sorts of havoc with your PC.
Cookies are just data passed
between the browser and server,
they cannot execute any code on
the browser or server so just
ignore the myths of cookies send-
ing information back to the web
server about applications on your
hard disk or the one about cookies

<HTML><HEAD><TITLE>Maintaining state using GET request method</TITLE></HEAD>
<BODY><H2>Thanks for your details Jaimie</H2>
<H3>Would you like to receive marketing information from other subsidiaries of
Acme Consulants Ltd?

Yes I certainly would

No I definitely wouldn’t

</H3></BODY></HTML>

➤ Listing 2

<FORM ACTION="http://localhost/scripts/marketing.dll" METHOD="POST">
<INPUT TYPE="SUBMIT" NAME="include" VALUE="Yes">
<INPUT TYPE="SUBMIT" NAME="include" VALUE="No">
<INPUT TYPE="HIDDEN" NAME="fullname" VALUE="Jaimie Sach">
</FORM>

➤ Listing 3

Cookies := TStringList.Create;
Cookies.Add(‘Delphi=Cool’);
Cookies.Add(‘JBuilder=Wait and see’);
// set cookies which will be sent back only to the current domain and path
// their expiry date is 7 days from today and will be sent over a non-secure
// HTTP connection
Response.SetCookieField(Cookies, ‘’, ‘’, Now + 7, False);
Cookies.Free;

➤ Listing 4

40 The Delphi Magazine Issue 29

reformatting hard disks or deleting
the registry: the only thing a cookie
can do is send information which
you explicitly consented to accept
in the first place, assuming you had
your browser’s cookie confirma-
tion security option enabled.

Whilst we’re on the topic of web
security, it’s worth mentioning
that ActiveX controls (supported
by IE 3.0x and above) embedded in
web pages have access to the
Win32 API and therefore can cer-
tainly erase files or reformat your
hard disk, if that’s what the ActiveX
control’s author intended!

Borland have published a web
document (www.borland.com/
security.htm) discussing their use
of cookies as well as dispelling
their mythical dangers.

URL Redirection
Web applications can redirect the
server to fetch its response con-
tent, usually a web page, from a
specified location. This can be
useful where the web application
must display a custom web page to
each individual user or group of
users, but without the need for the
application to generate the cus-
tomised web page.

Redirection can be achieved in
one of three ways. The first, most
straightforward, method is to call
the response object’s SendRedirect
method which takes a URL string
parameter. Do this if you just want
to redirect the request without
doing anything clever.

The other methods involve set-
ting the response instance’s Sta-
tusCode and Location properties.
The status code 301 indicates that
the requested web page has been
permanently moved to the location
specified by the Location property.
302 indicates that the web page has
been temporarily moved to the
specified location. The way 301
and 302 responses are handled are
browser-dependent: Navigator 3.0
simply displays the web page
specified by TWebResponse.Location
whereas Navigator 2.0 displays a
page saying that the requested
document has been permanently
or temporarily moved and pres-
ents a link which points to the new
location.

However to make redirection
work with status codes requires
that the response header contains
the Location field as well as the 301
or 302 status code. To add the loca-
tion header field to the response
use the Response object’s SetCus-
tomHeader method, for example:

Response.StatusCode := 301;
Response.Location :=
‘docs\somewebpage.html’;

Response.SetCustomHeader(
‘Location: ‘ +
Response.Location);

If you’re sharp you might wonder
why I bothered setting Response.
Location? Well there’s no real
reason: I could have just specified
the actual URL as part of the string
passed to SetCustomHeader and
saved a line of code. Actually, the
Location property is pretty much
redundant unless you modify the
SendResponse method to include it
as part of the response header but
I’ve elected to use the less invasive
SetCustomHeader instead. This
method is useful for adding
response header items not yet sup-
ported by the TWebResponse.Send-
Reponse method.

By the way, you shouldn’t send
any content as part of the response
when specifying the Location
header field.

Client-Side Form Validation
Form validation can use up a lot of
network bandwidth. Consider this
typical scenario. The browser sub-
mits the form to the server/web
application, the web application
validates the field values and sends
back a response content contain-
ing an error message if the valida-
tion failed. The surfer must then go
back to the form, correct the
invalid field and re-submit the
form. Over a slow HTTP connec-
tion this can be very time-
consuming and possibly annoying
for the web surfer. Ideally the form
would be validated before submis-
sion to the server: if you’re using
the latest browsers from Netscape
or Microsoft you can do just that.
Both Navigator 2.0 (and above)
and Internet Explorer 3.0x support
HTML scripting languages.

The JavaScript scripting lan-
guage is an object-oriented (not
just object-based) derivative of
Java and is supported by Naviga-
tor. Visual Basic Script (VBScript)
is a stripped-down version of VB
4.0 supported by Internet Explorer
which also supports JavaScript but
calls it JScript for reasons best
known to Microsoft. Navigator can
also handle VBScript via a plug-in
component.

The interpreted script code is
contained within the <SCRIPT
LANGUAGE> </SCRIPT> tags. Both lan-
guages are quite powerful:
Netscape use JavaScript exten-
sively in their FastTrack web
server’s remote configuration
management tools to good effect;
Borland’s IntraBuilder uses both
client-side and server-side JavaS-
cript to build web applications. It’s
no surprise that VBScript is used in
Microsoft’s Visual InterDev web
development tool.

The demo web page VALI-
DATE.HTM uses JavaScript to vali-
date its form fields before allowing
the request to be sent to the
server. Take a look at the JavaS-
cript source to see how it works:
it’s pretty straightforward and can
be used as boiler-plate code for
implementing validation in your
own web forms.

Though I’ve barely touched on
the details of HTML scripting, it’s
an increasingly important skill for
the web developer to use for build-
ing interactive web pages and to
add more functionality and polish
to a web site. The example I’ve pre-
sented is the most obvious applica-
tion of HTML scripting used in
conjunction with a web application
but much more can be achieved
with JavaScript. If you’re serious
about web development then
you’d do well to learn either or
both scripting languages. My per-
sonal preference is JavaScript, as it
is far more powerful than VBScript.

That’s all I’ll say about HTML
scripting, there are plenty of books
available on both scripting lan-
guages as well as language refer-
ences on both Netscape and
Microsoft web sites. Microsoft
Developer Network (MSDN) mem-
bers will find both JScript and

42 The Delphi Magazine Issue 29

VBScript language tutorials and
reference guides on their latest CD.
There’s also a paper comparing
JavaScript and VBScript at
www.centaur.com.

Before closing this section on
forms validation, a note about
empty form fields: they’re ignored
and don’t get sent as part of the
request. Generally this doesn’t
matter as the Values property of
the QueryFields or ContentFields
TWebRequest properties will return
a blank string if the specified value
name doesn’t exist, but if your
application handles a number of
different HTML forms and tries to
identify a particular form by the
form field names received in the
request then it will fail if any of the
fields are submitted blank.

The Server APIs
Delphi 3.0 server API-based web
applications support the two main
server APIs: ISAPI and NSAPI both
of which are handled by the TISA-
PIApplication class. But how? After
all ISAPI and NSAPI are different
server APIs so how can one set of
classes handle both? Well the sup-
port for NSAPI is a rather clever
cheat because what actually hap-
pens is that NSAPI calls are han-
dled by a DLL called ISAPITER
which manages a cache of ISAPI
DLLs, TISAPIApplications, to
handle NSAPI calls. ISAPITER
simply delegates NSAPI function
calls to an internal ISAPISession
instance which translates the
NSAPI call and passes control to
the target ISAPI DLL (from a list of
previously loaded or cached DLLs)
which handles the request via the
usual ISAPI entry points. If the
target DLL isn’t found in the cache
then it is loaded, added to the
cache and then called to handle the
request. Borland refer to ISAPITER
as their “NSAPI bridge” technology
which in theory could be used to
allow any ISAPI application to be
used with an NSAPI server.

Configuring NSAPI
Borland describe how to configure
Netscape servers to use ISAPITER
(see page 34-23 of the Developer’s
Guide) but manage to omit one cru-
cial step: you must insert the line:

NameTrans from="/scripts/*"
fn="assign-name" name="isapi"

in the <Object name=default> sec-
tion of OBJ.CONF which will enable
ISAPITER to handle all requests to
the path scripts/SomeISA.DLL. If
that fails then you’ll need to explic-
itly load the configuration file from
within the browser-based server
administration utility.

Configuring an ISAPI server, any
of Microsoft’s really, is a lot less
work and just requires you to map
a domain-relative virtual directory
(usually /scripts) to the local direc-
tory containing the ISA DLLs. But
so much for configuring ISAPI serv-
ers, let’s take a brief look at how
ISAPI/NSAPI requests are handled
by a TISAPIApplication.

Inside ISAPI Applications
When the server receives a client
request, it spawns a thread to
handle that request which is
passed to the TISAPIApplication
instance, which in turn may create
a new instance, or reactivate a
cached instance, of the WebModule
within the context of the request’s
thread. If the Application.Cache-
Connections property is set to True
any new WebModule instance is
cached for later re-use by another
request thread so it’s possible that
a request might not create a new
WebModule instance, new instances
are created only when all cached
WebModules are busy. Each WebMod-
ule is created or reactivated within
the context of the calling thread,
and is made thread-safe by the use
of critical section thread synchro-
nisation objects. This saves us the
worry of thread conflicts in our
ISAPI applications.

A TISAPIApplication can handle
a maximum number of active Web-
Modules (ie requests) as deter-
mined by the Application object’s
MaxConnections property, so if you
find your ISAPI application running
out of WebModule instances increase
MaxConnections appropriately. The
lower the value of MaxConnections
the less memory the web applica-
tion will use overall but obviously
this must be balanced with the
number of active requests which
must be handled.

Although ISAPI has performance
advantages over good old CGI it
can be a pain to develop with. I
don’t mean that it’s difficult, Delphi
3.0 makes it fairly easy, but when
you want to copy the latest version
of your application over the exist-
ing one you may be prevented from
doing so because if the server has
already loaded a previous version
of your DLL it won’t let go of it
unless you stop the server. Fortu-
nately there’s a solution, for Micro-
soft servers anyway, start up
Regedit and change the value of the
key

HKEY_LOCAL_MACHINE\System\
CurrentControlSet\Services\
W3Svc\Parameters\
CacheExtensions

from 01 to 00, this will cause the
server to load and unload the DLL
after handling each request so
there’s no need to shut down your
development server each time you
want to test the latest version of
your pet project. Unfortunately I
know of no way to achieve the
same thing with NSAPI servers.
One word of warning: make sure
CacheExensions is set to 01 on your
live web server otherwise perform-
ance will be seriously degraded.

Although the WebModule makes
writing ISAPI applications rela-
tively easy, some care is still
required especially with writing
database ISAPI applications. ISAPI
database web applications occa-
sionally run into problems with the
BDE and, on a number of occa-
sions, I’ve had “illegal BDE re-
entry” faults. The BDE is non re-
entrant: if during the internal exe-
cution of a BDE API function
another BDE function is called the
BDE’s internal call stack will
become corrupted and cause the
program to crash. Re-entry can
occur in multi-threaded applica-
tions, which is where the BDE Ses-
sion comes in. A thread which uses
the BDE must first open a new
IDAPI session which will isolate or
block all internal BDE operations
between different threads. Most
importantly a session opened by a
thread should be used exclusively
by that thread only: before the

January 1998 The Delphi Magazine 43

thread terminates it should close
the session so that no other thread
can use it.

A WebModule used by an ISAPI
application should have a TSession
component with it’s AutoSession-
Nameproperty set True so that a new
session name is automatically gen-
erated and used by all datasets in
the WebModule: never rely on the
default TSession or you’ll run into
problems. With AutoSessionName
set, the TSession in each WebModule
instance created by a server
thread spawned to handle a
request will have a unique session
name. So far so good, but if the
Application’s CacheConnections
property is set, a cached WebModule
will be re-used to handle the
request in which case the session
opened by a previous thread will
still be active and used in the con-
text of another thread which didn’t
open that session, this situation
seems to cause the intermittent
illegal BDE re-entry faults.

There are two workarounds:
either set CacheConnections to
False or in the WebDispatcher’s
BeforeDispatch and AfterDispatch
events, open and close the session
which will close dependent data-
sets: this will ensure that a new ses-
sion is created when the WebModule
is re-used and BeforeDispatch
opens the session and it’s datasets,
but at the cost of the complete
benefits of using cached WebMod-
ules. A definite case of choosing
the lesser of two evils?

Of course you’ll never encounter
such problems with CGI/WinCGI
web applications, for which the
CacheConnections and MaxConnec-
tions properties of the Application
object are irrelevant.

Converting
Between CGI And ISAPI
Converting an ISAPI/NSAPI appli-
cation to CGI/WinCGI is a simple
matter of editing the project
source so that an executable (pro-
gram) rather than a DLL (library) is
produced. Listing 5 shows the dif-
ferences between the two types of
project source. If you don’t want
the hassle of editing the project
source you can just run the Web
Server Application Wizard, choose

the application type you want and
then replace the default WebMod-
ule with your own. A neat solution
would be to write an IDE Expert to
make the necessary alterations to
the project source, now there’s a
job for someone...

Get Out The Bug Spray!
The CGI/WinCGI classes have a few
bugs which are serious enough to
prevent CGI and WinCGI apps from
working on the web servers that
I’ve used, but seeing as most
Delphi 3.0 web applications will
run on either Netscape or Micro-
soft web servers using server APIs
you might not be too worried
about such bugs! Okay so CGI and
WinCGI are less important than
ISAPI and NSAPI in the Windows
web server world, but there are
times when CGI is the better
option, especially when your ISAPI
DLL keeps pulling down your web
server as a result of elusive
memory leaks and/or fatal crashes.
It’s also handier to develop and
test your web server applications
using CGI or WinCGI, as you’re
saved the hassle of stopping the
web server in order to unload the
previous version of your ISAPI DLL
each time you want to test changes
to your latest creation (though
there’s a way around this for
Microsoft servers as we’ve seen).
And finally, not all Windows-based
web servers support ISAPI or
NSAPI so we can’t just forget about
CGI yet awhile.

So for the benefit of the (prob-
able) few, let’s get out the bug
spray and eradicate those bugs.
The first bug (?) applies to
O’Reilly’s Website Server 1.1 and
causes CGI applications to gener-
ate an Unknown status reply from
server: 0! error dialog before dis-
playing the response received
from the server. Examination of the
response header sent by the server
shows the first line to read
HTTP/1.0 OK instead of the correct
HTTP/1.0 200 OK. With Netscape
FastTrack Server 2.0 there’s no
such problem.

Anyway for WebSite users the fix
is to add the following lines to
CGIAPP.PAS:

{$IFDEF WEBSITE}
AddHeaderItem(StatusString,
‘HTTP/1.0 %s’#13#10);

{$ENDIF}

before the line:

AddHeaderItem(StatusString,
‘Status: %s’#13#10);

which cures the problem com-
pletely (assuming that you have
defined the WEBSITE conditional
define). It also fixes the problems
of cookies with past expiry dates
not deleting themselves and of Sta-
tusCode and Reason response prop-
erties being ignored. This fix
applies only to Website 1.1 which
seems to imply that the problem is
with that particular server.

program CGIApp;
{$APPTYPE CONSOLE}
uses
HTTPApp, CGIApp,
webmod in ‘webmod.pas’ {WebModule1: TWebModule};
{$R *.RES}

begin
Application.Initialize;
Application.CreateForm(TWebModule1, WebModule1);
Application.Run;

end.

library ISAPIApp;
uses
HTTPApp, ISAPIApp,
webmod in ‘webmod.pas’ {WebModule1: TWebModule};

{$R *.RES}
exports
GetExtensionVersion,
HttpExtensionProc,
TerminateExtension;

begin
Application.Initialize;
Application.CreateForm(TWebModule1, WebModule1);
Application.Run;

end

➤ Listing 5

44 The Delphi Magazine Issue 29

The second bug causes TCGIRe-
sponse.SendRedirect to fail, again
the fix is simple. In the implementa-
tion of SendRedirect, append
#13#10#13#10 to the format string,
this ensures that there’s a blank
line after the response header as
required by HTTP. This bug affects
any web server.

The next few bugs prevent
WinCGI from handling POST
requests and from creating the
response output file when used
with non-Microsoft servers. The
first fix is to add the following line
to TWinCGIRequest’s constructor:

if ContentFile = ” “ then

before the line:

FClientData := TFileStream.Create(

ContentFile, fmOpenRead or
fmShareDenyNone);

which fixes the problem of the
application failing when the
request method is POST.

The second fix requires a change
to the following line in the same
constructor:

FServerData := TFileStream.Create(

OutputFile, fmOpenWrite or
fmShareDenyNone);

to read:

FServerData := TFileStream.Create(

OutputFile, fmCreate or
fmOpenWrite or
fmShareDenyNone);

which handles the situation where
the web server doesn’t create the
response output file but leaves the
web application to do so, as is the
case with the WebSite and
Netscape servers.

The final bug prevents cookies
from being retrieved by TWinCGIRe-
quest and is fixed by simply replac-
ing the following line in
TWinCGIRequest.GetStringVariable:
21..24, 26..28:

with:
21..24, 26,28:

This causes the Cookie key value to
be correctly retrieved from the
[Extra Headers] section of the
request INI file rather than from the

[CGI] section where the key
doesn’t exist.

And that’s it. Before making
these changes to CGIAPP.PAS I’d
recommend that you copy the
source from SOURCE\INTERNET
to another directory called, if you
like, SOURCE\CGIFIXED.

Debugging Web Applications
The most convenient way to debug
a web application is to make it a
WinCGI application. Most WinCGI-
capable web servers provide a
facility to prevent the server from
deleting the request data INI file
when the WinCGI application ter-
minates, but if not there’s nothing
to stop you writing a routine in
your WinCGI application to copy
the request INI file for later use
debugging your apps. By specify-
ing the saved INI file path as a Run
parameter you can just run and
debug your application from
within the IDE like any other.

Both the above approaches will
work fine provided any bugs are
contained within your applica-
tion’s code and not within the com-
ponent library’s code, obviously
any bugs in the ISAPI/NSAPI com-
ponent and class libraries can’t be
tracked down using a WinCGI
application as the testbed and vice
versa!

So You Wanna
Play The Web Master?
I’m hoping that after reading all
this you’re just itching to try writ-
ing your own web applications (if
you haven’t already done so), but
perhaps don’t have an intranet to
play with, let alone a web server to
dish up your web pages and appli-
cations. Well don’t despair
because you don’t have to have an
intranet, a single PC will do, and
there are some free web servers
available out there too.

If you want to write CGI and
WinCGI web applications you can
install O’Reilly’s WebSite 1.1
Server, which I’ve seen free on
magazine cover CDs, is available at
www.ora.com and is also included
with the book Building Your Own
Web Site. It’s published by O’Reilly
& Associates, who also publish
some excellent books for internet

developers. A trial version of Web-
Site 2.0 Professional, which adds
loads of new features, is available
for download from www.ora.com.

For your ISAPI needs there’s
Microsoft’s Personal Web Server
(PWS) for Windows 95, or Internet
Information Server (IIS) for Win-
dows NT, both available from
www.microsoft.com. For NSAPI,
trial versions of Netscape’s web
servers can be downloaded from
home.netscape.com. Netscape
FastTrack 2.0 runs under Win95
and supports both CGI/WinCGI and
NSAPI. You can also add support
for CGI/WinCGI to Microsoft’s web
servers.

Once you’ve successfully
installed the web server you
should be able to access it from the
same machine using the URL
http://127.0.0.1 (or http://localhost
with WebSite, or the hostname
configured with Netscape Server)
from your browser, but be sure to
use Navigator as your browser as
I’ve found that IE 3.0x sometimes
behaves strangely when used in
this way. As part of the server
setup/configuration it’s usually
possible to configure the host-
name you wish to use to identify
your web server.

If you find you can’t connect to
your local web server and you’re
not on a network, then install
dial-up networking and bind
TCP/IP to the dial-up adapter using
the IP address 127.0.0.1 (for exam-
ple) with a subnet mask of
255.0.0.0, cancel the error dialog
about the IP address being invalid,
and then exit Control Panel. You’ll
then be prompted to insert your
Windows 95 (or NT) CD-ROM so
that the necessary drivers can be
installed, followed by a system
restart. After this you should then
be able to start your local web
server from your Netscape
browser.

You may be wondering about the
minimum hardware required to
host a web server. Well I’ve man-
aged to run WebSite 1.1 and Per-
sonal Web Server 95 on a 486/66
with 32MB RAM with no problems,
and all the research and testing
(using WebSite, PWS 95 and
Netscape FastTrack 2.0) for this

January 1998 The Delphi Magazine 45

article has been done on a Pentium
120 notebook with 32Mb RAM.

To run the demos presented
here you’ll need to configure the
server directories listed in Table 1
on the web server to map to the
local directories shown.

The server administration facili-
ties of all the web servers I’ve men-
tioned are straightforward to use
for configuring virtual directories:
both Microsoft and Netscape serv-
ers use remote browser-based
administration front-ends. All the
demo applications are ISAPI/NSAPI
applications which you can use
with any Microsoft or Netscape
server. If you want to get up and
running quickly under Windows 95

I recommend running the demo
applications under Personal Web
Server: it’s free and the download
file size is relatively small.

Conclusion
Whilst the new web application
classes and components save a lot
of effort there are times when it
might be better to write your web
application from scratch, forego-
ing the luxury of the VCL and using
plain old “back to basics” Pascal.

For simple web applications the
overhead of using a WebModule
can be significant: 200Kb against
36Kb for a very trivial “hello world”
WebModule application against
the equivalent non-WebModule
application. If you’re writing ISAPI/
NSAPI applications it’s better to

use WebModules, but simple CGI/
WinCGI applications can be made
significantly smaller if WebMod-
ules are not used, at the possible
expense of having to write more
code. A case of the classic trade-off
between development time and
code size: the choice is yours.

If you do decide to write your
simple CGI web applications with-
out using WebModules then check
out previous articles by Bob Swart
and Steve Troxell. You can also
check out my paper (plug, plug...)
on writing web applications with
Delphi 2.0 on the Borland Develop-
er’s Conference 1997 CD-ROM.

John O’Connell is a freelance de-
veloper and consultant specialis-
ing in Windows and Internet
software development. He can be
emailed at john.oconnell@btin-
ternet.com when not travelling
around the world, in which case
he picks up email at john_o_con-
nell@hotmail.com
Copyright (c) 1997 John O’Connell
All rights reserved

➤ Table 1

Server Directory Maps To

/docs/ Directory containing sample web pages

/cgi-bin32/ Directory containing CGI applications

/cgi-win32/ Directory containing WinCGI applications

/scripts/ Directory containing ISAPI/NSAPI application DLLs

	Page Producer Productivity
	Saving State
	State-Saving Cookies
	URL Redirection
	Client-Side Form Validation
	The Server APIs
	Configuring NSAPI
	Inside ISAPI Applications
	Converting Between CGI And ISAPI
	Get Out The Bug Spray!
	Debugging Web Applications
	So You Wanna Play The Web Master?
	Conclusion

